Make your own free website on Tripod.com

 

CITOLOGÍA

 
INDICE

La citología o biología celular es la rama de la biología que estudia las células en lo que concierne a su estructura, sus funciones ysu importancia en la complejidad de los seres vivos. Citología viene del griego cavidad.

Los organelos que componen a una célula son:

Membrana plasmática o citoplasmática
Definición

La membrana plasmática o citoplasmática esuna estructura laminar que engloba a las células, define sus límites y contribuye a mantener el equilibrio entre el interior y el exterior de éstas. Esta compuesta por una bicapa lipídica que sirve de "contenedor" para los compartimentos internos de la célula, así como también otorga protección mecánica. Está formada principalmente por lípidos y proteínas. La mayor característica de esta barrera es que presenta una permeabilidad selectiva, lo cual le permite "seleccionar" las moléculas que entran y salen de la célula. Tiene un grosor aproximado de 75 Å. No es visible a microscopio óptico pero si a microscopio electrónico, donde se pueden observar dos capas oscuras laterales y una central más clara.

Estructura

Esquema de una membrana celular. Según el modelo del mosaico fluido, las proteínas (en rojo y naranja) serían como "icebergs" que navegarían en un mar de lípidos (en azul). Nótese además que las cadenas de oligosacáridos (en verde) se hallan siempre en la cara externa, pero no en la interna.
Su modelo estructural es conocido como mosaico fluido, El "mosaico fluido" es un término acuñado por S.J. Singer y G.L. Nicolson en 1972. Este consiste en una bicapa lipídica complementada con diversos tipos de proteínas. La estructura básica se mantiene unida mediante uniones no covalentes.
Las proteínas de la membrana plasmática se pueden clasificar según cómo se dispongan en la bicapa lipídica123:
Proteínas integrales: Embebidas en la bicapa lipídica, atraviesan la membrana una o varias veces, asomando por una o las dos caras (proteínas transmembrana); o bien mediante enlaces covalentes con un lípido o a un glúcido de la membrana. Su aislamiento requiere la ruptura de la bicapa.
Proteínas periféricas: A un lado u otro de la bicapa lipídica, pueden estar unidas débilmente por enlaces no covalentes. Fácilmente separables de la bicapa, sin provocar su ruptura.
Los glúcidos se hallan asociados mediante enlaces covalentes a lípidos, proteínas y generalmente forman parte de la matriz extracelular.
Otras sustancias pueden estar asociadas a esta estructura básica como diversos tipos de glúcidos que pueden unirse de forma covalente a lípidos (glucolípidos) o a proteínas (glucoproteínas). Las cadenas de estos glúcidos se disponen hacia el medio extracelular por la cara externa de la membrana y constituyen el glucocálix o matriz extracelular.
Esta estructura general -modelo unitario- se presenta también en las membranas de diversos orgánulos del interior de la célula: los del sistema de endomembranas, tales como retículo endoplasmático, aparato de Golgi y envoltura nuclear, y los de otros orgánulos, como las mitocondrias y los plastos, que proceden de endosimbiosis.

Composición
La composición de la membrana plasmática varía entre células dependiendo de la función o del tejido en la que se encuentren, pero se puede estudiar de forma general. La membrana plasmática está compuesta por una doble capa de fosfolípidos, por proteínas unidas no covalentemente a esa bicapa, e hidratos de carbono unidos covalentemente a lípidos o proteínas. Las moléculas más numerosas son las de lípidos, ya que se cree que por cada 50 lípidos hay una proteína. Sin embargo, las proteínas, debido a su mayor tamaño, representan aproximadamente el 50% de la masa de la membrana.
Proteínas: el 80% son intrínsecas, mientras que el 20% restantes son extrínsecas. Hay proteínas con diferentes funciones en la membrana plasmática: transportadoras, conectoras (conectan la membrana con la matriz extracelular o con el interior), receptoras (encargadas del reconocimiento y adhesión) y enzimas.
Hidratos de carbono: están en la membrana unida covalentemente a proteínas o a lípidos. Pueden ser polisacáridos u oligosacáridos. Se encuentran en el exterior de la membrana formando el glicocalix. Representan el 8% del peso seco de la membrana plasmática.
Lípidos: el 98% son anfipáticos, es decir que presentan un lado hidrófilo (que da la cara al agua) y un lado hidrofóbico (que no se junta con el agua). De entre los lípidos, los más importantes son los fosfolípidos y esfingolípidos, que se encuentran en todas las células; le siguen los glucolípidos, así como esteroides, como el colesterol. Estos últimos no existen o son escasos en las membranas plasmáticas de las células procariotas. Existen también grasas neutras, que son lípidos no anfipáticos pero sólo representan un 2% del total de lípidos de membrana.
Función

El colesterol representa un 23% de los lípidos de membrana. Sus moléculas son pequeñas y más anfipáticas en comparación con otros lípidos. Se dispone con el grupo hidroxilo hacia el exterior de la célula (ya que ese hidroxilo interactúa con el agua). El colesterol es un factor importante en la fluidez y permeabilidad de la membrana ya que ocupa los huecos de la membrana. A mayor cantidad de colesterol, menos permeable y fluida es la membrana.

REGRESAR A INDICE

 

Ribosomas
Definición
Los ribosomas, son los orgánulos citoplasmáticos encargados de ensamblar proteínas a partir de la información genética que le llega del ADN transcrita en forma de ARN mensajero (ARNm). Sólo son visibles al microscopio electrónico debido a su reducido tamaño (29 nm en células procariotas y 32 nm en eucariotas). A microscopía electrónica, se observan como estructuras redondeadas densas a los electrones. A microscopía óptica se observa que son los responsables de la basofilia que se observa en algunas células. Están en todas las células vivas (excepto en los espermatozoides).
Estructura y composición
Los ribosomas de las células procariotas, son los más estudiados. Son de 70S y su peso molecular es de 2500 Kilodalton. La molécula de ARNr forma el 65% del ribosoma y las proteinas representan el 35%. Las moléculas de ARN ribosómico son ricas en adenina y guanina y forman una hélice alrededor de las proteínas. Están formados por dos subunidades:
Subunidad mayor: es 50 S. Está formada por dos moléculas de ARN, una de 23 S y otra de 5 S. Además hay 34 proteínas básicas de las cuales sólo una se repite en la subunidad menor.
Subunidad menor: es de 30 S y tiene una molécula de ARNr de 16 S además de 21 proteínas.
En eucariotas, los ribosomas son 80 S. Su peso molecular es de 4200 Kdalton. Contienen un 40% de ARNr y 60% de proteínas. Al igual que los procariotas se dividen en dos subiunidades pero estas subunidades no son iguales:
Subunidad mayor: es 60 S. Tiene tres tipos de ARNr: 5 S, 28 S y 5,8 S y tiene 49 proteínas todas ellas distintas a las de la subunidad menor.
Subunidad menor: es 40 S. Tiene una sola molécula de ARNr 18 S y contiene 33 proteínas. Dependiendo de que organismo eucariota sea, este ARNr 18 S puede sufrir alteraciones.
Los ribosomas que aparecen en plastos son similares a los procariotas. Por el contrario, los ribosomas mitocondriales dependen según la especie. Tienen al igual que los procariotas 70 S pero en la subunidad mayor, hay un ARNr de 4 S que es equivalente al 5 S procariota.
Función

Los ribosomas son los orgánulos en los cuales se sintetizan las proteínas. La información para que se de esa síntesis, está en el ARN mensajero (ARNm). Hay una secuencia de nucleótidos que determina la secuencia de aminoácidos de la proteína. Para que los aminoácidos se incorporen a un polipéptido, interviene el ARN transferente (ARNt) ya que estos son los encargados de llevar los aminácidos a los ribosomas.
El ribosoma lee el ARN mensajero y ensambla la proteína con los aminoácidos suministrados por los ARN de transferencia, este proceso se denomina síntesis de proteínas, que lo hace con una serie de aminoacidos para codificar las proteinas.
Todas las proteínas están formadas por aminoácidos. Entre los seres vivos se han descubierto hasta ahora 22 aminoácidos. Cada aminoácido está codificado por uno o más codones (o tripletes) y por eso se dice que el código genético es degenerado. El comienzo de la secuencia es, en general, el codón AUG que codifica para el aminoácido metionina. Al final de la secuencia se ubica un codón que indica el final de la proteína: es el codón de terminación. Se dice que el código genético es universal porque cada codón codifica para el mismo aminoácido entre la mayoría de los organismos (no todos).
El ribosoma consta de dos partes, la subunidad mayor y una menor, estas salen del núcleo celular por separado. Por experimentación se puede decir que se mantienen unidas por cargas, ya que al bajarse la concentración de Mg+2, las subunidades tienden a separarse. El ribosoma procariota tiene un coeficiente de sedimentación de 70s y está formado por dos subunidades (50s y 30s). El ribosoma eucariota tiene un coeficiente de sedimentación de 80s (formado por dos subunidades, una de 60s y otra de 40s). Este se puede encontrar unido al retículo endoplasmático rugoso (RER), que es la forma habitual en la célula eucariota, o encontrarlo en el citoplasma, donde recibe el nombre de polisoma o polirribosoma (forma habitual en la célula procariota). Este polisoma se encarga de sintetizar proteínas de localización celular, mientras que los ribosomas del RER se encargan de sintetizar proteínas de exportación, o sea que se irán de la célula hacia otro lugar donde se necesite.

REGRESAR A INDICE


Retículo endoplásmico


Definición

El retículo endoplasmático, es una red de membranas interconectadas que forman cisternas, tubos aplanados y sáculos comunicados entre sí, que intervienen en funciones relacionadas con la síntesis protéica, metabolismo de lípidos y algunos esteroides, así como el transporte intracelular. Se encuentra en la célula animal y vegetal pero no en la célula procariota.

Estructura y Composición
El retículo endoplasmatico rugoso se encuentra unido a la membrana nuclear externa mientras que el retículo endoplasmatico liso es una prolongación del retículo endoplasmatico rugoso.
El retículo endoplasmático rugoso tiene esa apariencia debido a los numerosos ribosomas adheridos a su membrana mediante unas proteínas denominadas "riboforinas". Tiene unos sáculos más redondeados cuyo interior se conoce como "luz del reticulo" o "lumen" donde caen las proteínas sintetizadas en él. Está muy desarrollado en las células que por su función deben realizar una activa labor de síntesis, como las células hepáticas o las células del páncreas.
El retículo endoplasmático liso no tiene ribosomas y participa en el metabolismo de lípidos.
El Reticulo endoplasmatico tiene variedad de formas:tubúlos, vesículas, cisternas. En algunos casos en una misma celula se pueden observar los tres tipos.
Función

Síntesis de proteínas: La lleva a cabo el retículo endoplasmatico rugoso mediante los ribosomas. Estas proteínas serán transportadas al Aparato de Golgi mediante vesículas de transición donde dichas proteínas sufrirán un proceso de maduración para luego formar parte de los lisosomas o de vesículas secretoras.
Metabolismo de lípidos: El retículo endoplasmatico liso, al no tener ribosomas le es imposible sintetizar proteínas pero sí sintetiza lípidos de la membrana plasmática, colesterol y derivados de éste como las ácidos biliares o las hormonas esteroideas.
Detoxificación: Es un proceso que se lleva a cabo principalmente en las células del hígado y que consiste en la inactivación de productos tóxicos como drogas, medicamentos o los propios productos del metabolismo celular, por ser liposolubles (hepatocitos)
Glucoxilación: Son reacciones de transferencia de un oligosacárido a las proteínas sintetizadas. Se realiza en la membrana del retículo endoplasmático. De este modo, la proteína sintetizada se transforma en una proteína periférica externa del glucocálix.


REGRESAR A INDICE



Aparato de golgi
   
Definición
El aparato de Golgi se compone de una serie de sacos o dictiosomas (entre 4 y 8) conocidos como cisterna. Normalmente se observan entre 4 y 8, pero se han llegado a observar hasta 60 dictiosomas1. Alrededor de la cisterna principal se disponen las vesículas esféricas recién exocitadas.
Función

El aparato de Golgi se puede dividir en tres regiones funcionales:
Región Cis-Golgi: es la más externa y próxima al retículo. De él recibe las vesículas de transición, que son sáculos con proteínas que han sido sintetizadas en la membrana del retículo endoplasmático rugoso (RER), introducidas dentro de sus cavidades y transportadas por el lumen hasta la parte más externa del retículo. Estas vesículas de transición son el vehículo de dichas proteínas que serán transportadas a la cara externa del aparato de Golgi.
Región medial: es una zona de transición.
Región Trans-Golgi: es la que se encuentra más cerca de la membrana citoplasmática. De hecho, sus membranas, ambas unitarias, tienen una composición similar.
Las vesículas provenientes del retículo endoplásmico se fusionan con el cis-Golgi, atravesando todos los dictiosomas hasta el trans-Golgi, donde son empaquetadas y enviadas al lugar que les corresponda. Cada región contiene diferentes enzimas que modifican selectivamente las vesículas según donde estén destinadas2. Sin embargo, aún no se han logrado determinar en detalle todas las funciones y estructuras del aparato de Golgi.


El aparato de Golgi se encarga de la modificación, distribución y envío de dichas macromoléculas en la célula. Modifica proteínas y lípidos (grasas) que han sido sintetizados previamente tanto en el retículo endoplasmático rugoso como en el liso y los etiqueta para enviarlos a donde corresponda, fuera o dentro de la célula. Las principales funciones del aparato de Golgi vienen a ser las siguientes:
Modificación de sustancias sintetizadas en el RER: en el aparato de Golgi se transforman las sustancias procedentes del RER. Estas transformaciones pueden ser agregaciones de restos de carbohidratos para conseguir la estructura definitiva o para ser proteolizados y así adquirir su conformación activa. Por ejemplo, en el RER de las células acinosas del páncreas se sintetiza la proinsulina que debido a las transformaciones que sufre en el aparato de Golgi, adquirirá la forma o conformación definitiva de la insulina. Las enzimas que se encuentran en el interior de los dictiosomas son capaces de modificar las macromoléculas mediante glicosilación (adición de carbohidratos) y fosforilación (adición de fosfatos). Para ello, el aparato de Golgi transporta ciertas sustancias como nucleótidos y azúcares al interior del orgánulo desde el citoplasma. Las proteínas también son marcadas con secuencias señal que determinan su destino final, como por ejemplo, la manosa-6-fosfato que se añade a las proteínas destinadas a los lisosomas. Para llevar a cabo el proceso de fosforilación el aparato de Golgi importa moléculas de ATP al interior del lumen 3, donde las kinasas catalizan la reacción. Algunas de las moléculas fosforiladas en el aparato de Golgi son las apolipoproteínas que dan lugar a las conocidas VLDL que se encuentran en el plasma sanguíneo. Parece ser que la fosforilación de estas moléculas es necesaria para favorecer la secreción de las mismas al torrente sanguíneo.


REGRESAR A INDICE

 

MITOCONDRIA
Definición

 

Las mitocondrias son los orgánulos que se encuentran en prácticamente todas las células eucariotas (también hay en células gaméticas), encargados de suministrar la mayor parte de la energía necesaria para la actividad celular; actúan por tanto, como centrales energéticas de la célula y sintetizan ATP por medio de la fosforilación oxidativa.

 

Estructura y composición

La morfología de la mitocondria es difícil de describir puesto que son estructuras muy plásticas que se deforman, se dividen y fusionan. Normalmente se las representa en forma alargada. Su número depende de las necesidades energéticas de la célula. Al conjunto de las mitocondrias de la célula se le denomina condrioma celular.
Las mitocondrias están rodeadas de dos membranas que separan tres espacios: el citosol, el espacio intermembrana y la matriz de la mitocondria.
Membrana externa.
Es una bicapa lipídica exterior permeable a iones, metabolitos y muchos polipéptidos. Eso es debido a que contiene proteínas que forman poros, llamadas porinas o VDAC (de canal aniónico dependiente de voltaje), que permiten el paso de moléculas de hasta 10.000 dalton y un diámetro aproximado de 20 Å.
Membrana interna.
Tiene una composición similar pero con menor número de proteínas transportadoras, lo que la hace poco permeable, excepto a ATP, ADP, ácido pirúvico, O2 y agua. Esta membrana forma ondulaciones o pliegues llamadas crestas mitocondriales. En la mayoría de los eucariontes, las crestas forman tabiques aplanados perpendiculares al eje de la mitocondria, pero en algunos protistas tienen forma tubular o discoidal. En la composición de la membrana interna hay una gran abundancia de proteínas, que son además exclusivas de este orgánulo:

La cadena de transporte de electrones, compuesta por cuatro complejos enzimáticos fijos y dos transportadores de electrones móviles: el complejo I o NADH deshidrogenasa (que contiene flavina mononucleótido (FMN), el complejo II o succinato deshidrogenasa; ambos ceden electrones al coenzima Q o ubiquinona; el complejo III o citocromo bc1 que cede electrones al citocromo c y el complejo IV o citocromo c oxidasa que cede electrones al O2 para producir dos moléculas de agua.

Un complejo enzimático, el canal de H+ ATP-sintetasa que cataliza la síntesis de ATP (fosforilación oxidativa).

Proteínas trasportadoras que permiten el paso de iones y moléculas a través de la membrana interna.
Espacio intermembrana
Entre ambas membranas queda delimitado un espacio intermembrana está compuesto de un líquido similar al hialoplasma; tienen una alta concentración de protones como resultado del bombeo de los mismos por los complejos enzimáticos de la cadena respiratoria.
Matriz mitocondrial
Contiene menos moléculas que el citosol, aunque contiene iones, metabolitos a oxidar, ADN circular bicatenario muy parecido al de las bacterias, ribosomas tipo 70S similares a los de bacterias, llamados mitorribosomas, que realizan la síntesis de algunas proteínas mitocondriales, y contiene ARN mitocondrial; es decir, tienen los orgánulos que tendría una célula procariota de vida libre. En la matriz mitocondrial tienen lugar diversas rutas metabólicas clave para la vida, como el ciclo de Krebs y la beta-oxidación de los ácidos grasos.

Función
Del apartado anterior se deduce que la principal función de las mitocorndrias es la oxidación de metabolitos (ciclo de Krebs, beta-oxidación de ácidos grasos) y la obtención de ATP mediante la fosforilación oxidativa, que es dependiente de la cadena transportadora de electrones; el ATP producido en la mitocondria supone un porcentaje muy alto del ATP sintetizado por la célula. También sirve de almacén de sustancias como iones, agua y algunas partículas como restos de virus y proteínas.

REGRESAR A INDICE

 

 

LISOSOMA
Definición
Los lisosomas son llamados bolsas suicidas porque si se rompiera su membrana, las enzimas encerradas en su interior, terminarían por destruir a toda la célula. Los lisosomas se forman a partir del retículo endoplásmico rugoso y posteriormente las enzimas son empaquetadas por el aparato de Golgi.
Estructura

Los lisosomas tienen una estructura muy sencilla, semejantes a vacuolas, rodeados solamente por una membrana, contienen gran cantidad de enzimas digestivas que degradan todas las moléculas inservibles para la célula.

Los lisosomas tienen una estructura muy sencilla, semejantes a vacuolas, rodeados solamente por una membrana, contienen gran cantidad de enzimas digestivas que degradan todas las moléculas inservibles para la célula.Esta membrana es selectivamente permeable, e interviene especialmente en el mantenimiento de la turgencia celular y en el crecimiento. La habilidad de las vacuolas de captar y almacenar agua permite crecer a las plantas, con muy poca gasto de material.

Los animales, en cambio, deben elaborar protoplasma, con toda su complejidad, para crecer. Se piensa que la vacuolización permitió a los vegetales ocupar tierra firme al poder contar las células con un generoso depósito de agua.

Composición Los lisosomas se forman a partir del retículo endoplásmico rugoso y posteriormente las enzimas son empaquetadas por el aparato de Golgi.
Función

Las vegetales pueden tener funciones muy diversas:

Almacenamiento de reservas y de productos tóxicos,
Crecimiento de las células por presión de turgencia,
Funciones análogas a los lisosomas cuando contienen enzimas hidrolíticas,
Homeóstasis del interior celular, ...
Permiten rápidos movimientos en algunos órganos de ciertas plantas (Mimosa, Dionaea, ...)


En animales, las vacuolas contráctiles se encargan de eliminar el exceso de agua.
Características de microorganismos que viven en medios hipotónicos (p.e. Protozoos).
En animales, las vacuolas contráctiles se encargan de eliminar el exceso de agua.
Características de microorganismos que viven en medios hipotónicos (p.e. Protozoos).
En animales, las vacuolas contráctiles se encargan de eliminar el exceso de agua.
Características de microorganismos que viven en medios hipotónicos (p.e. Protozoos).


REGRESAR A INDICE

 

CLOROPLASTOS
 
Definición Los cloroplastos son los orgánulos en donde se realiza la fotosíntesis en las células vegetales y de los otros organismos fotosintetizadores. Están formados por un sistema de membranas interno en donde se encuentran ubicados los sitios en que se realiza cada una de las partes del proceso fotosintético.
En los organismos procariontes fotosintéticos, el proceso se lleva a cabo asociado a ciertas prolongaciones de la membrana plasmática hacia el interior de la célula
Estructura y composición
Las dos membranas del cloroplasto poseen una estructura continua que delimita completamente el cloroplasto. Ambas se separan por un espacio intermembranoso llamado a veces espacio periplastidial. La membrana externa es muy permeable, no tanto como la interna que contiene proteínas específicas para el transporte. La cavidad interna llamada estroma, en la que se llevan a cabo reacciones de fijacion de CO2, contiene ADN circular, ribosomas (de tipo 70S, como los bacterianos), gránulos de almidón, lípidos y otras sustancias. También, hay una serie de sáculos delimitados por una membrana llamados tilacoides los cuales se organizan en los cloroplastos de las plantas terrestres en apilamientos llamados grana (plural de granum, grano). Las membranas de los tilacoides contienen sustancias como los pigmentos fotosintéticos (clorofila, carotenoides, xantofilas) y distintos lípidos; proteínas de la cadena de transporte de electrones fotosintética y enzimas, como la ATP-sintetasa.
Función
Es el orgánulo donde se realiza la fotosíntesis. Existen dos fases, que se desarrollan en compartimentos distintos:
Fase luminosa. Se realiza en la membrana de los tilacoides, donde se halla la cadena de transporte de electrones y la ATP-sintetasa responsables de la conversión de la energía lumínica en energía química (ATP) y de la generación poder reductor (NADPH).
Fase oscura. Se produce en el estroma, donde se halla el enzima RuBisCO, responsable de la fijación del CO2 mediante el ciclo de Calvin.

REGRESAR A INDICE

REGRESAR A LA PAGINA PRINCIPAL